Picone-type theorems for semidiscrete hyperbolic equations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sturm-picone Type Theorems for Second-order Nonlinear Elliptic Differential Equations

The aim of this article is to give Sturm-Picone type theorems for the pair of second order nonlinear elliptic differential equations div(p1(x)|∇u|∇u) + q1(x)f1(u) + r1(x)g1(u) = 0, div(p2(x)|∇v|∇v) + q2(x)f2(v) + r2(x)g2(v) = 0, where | · | denotes the Euclidean length and ∇ = ( ∂ ∂x1 , . . . , ∂ ∂xn )T (the superscript T denotes the transpose). Our results include some earlier results and gene...

متن کامل

Comparison Results for Semilinear Elliptic Equations via Picone-type Identities

By means of a Picone’s type identity, we prove uniqueness and oscillation of solutions to an elliptic semilinear equation with Dirichlet boundary conditions.

متن کامل

Semidiscrete and single step fully discrete approximations for second order hyperbolic equations

Fimte element approximations are analysed, for initial boundary value problems far second ox&ezJiyperboUc équations For both semidiscrete andfully discrete schémas, optimal order rate o f convergence estimâtes in L are der wed, us ing L projections of the initial data as starting values À new class of single step fully discrete schemes is developed, which are high order accurate in time The sch...

متن کامل

Optimal Error Estimates of the Semidiscrete Central Discontinuous Galerkin Methods for Linear Hyperbolic Equations

We analyze the central discontinuous Galerkin (DG) method for time-dependent linear conservation laws. In one dimension, optimal a priori L error estimates of order k+1 are obtained for the semidiscrete scheme when piecewise polynomials of degree at most k (k ≥ 0) are used on overlapping uniform meshes. We then extend the analysis to multidimensions on uniform Cartesian meshes when piecewise te...

متن کامل

Semidiscrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton-Jacobi Equations

We introduce new Godunov-type semidiscrete central schemes for hyperbolic systems of conservation laws and Hamilton–Jacobi equations. The schemes are based on the use of more precise information about the local speeds of propagation and can be viewed as a generalization of the schemes from [A. Kurganov and E. Tadmor, J. Comput. Phys., 160 (2000), pp. 241–282; A. Kurganov and D. Levy, SIAM J. Sc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1983

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1983-0699409-0